

資源・環境・ソリューションの課題への取り組み 一水熱処理を利用した重金属溶出抑制技術ー

土壌汚染の超過事例は依然として多く、なかでも重金属等(第二種)による汚染件数が多い。 これら重金属は、成分ごとに性質が大きく異なることから、多種類の重金属汚染に効果の大 きい処理法は少ない。

水熱処理法は、ケイ酸カルシウム(トバモライト)の結晶に重金属等を閉じ込めるという新 しい発想で開発されたプロセスであり、多くの重金属類に対して溶出抑制効果が高い。

本稿では、資源・環境・ソリューションの課題に対する技術の一つとして、水熱処理による 重金属溶出抑制技術を紹介する。

応用化学事業部 技術部 井田 徹

土壌汚染状況

土壌汚染対策法が施行された平成19年度までの 土壌汚染状況の調査結果によると、超過事例(指定 基準又は土壌環境基準に適合していない事例)のう ち、重金属等(第二種特定有害物質)の超過事例が多 く、中でも鉛、ヒ素、フッ素、六価クロムの超過事 例が多かった*1)。また、重金属等の超過事例に関 する汚染の除去等の措置内容は、掘削除去やアス ファルト等による舗装が多く、不溶化などの措置は 少なかった。

従来型の重金属類の不溶化処理としては、セメン ト固化法やキレート処理法が知られている。しか し、セメント固化法では高アルカリになると鉛や六 価クロムなどは再溶出する恐れがあること*²⁾、キ レート法では金属種によってはキレートの反応性 が異なったり薬剤コストが高くなること、などの課 題があった。

このような状況を踏まえ、新しい不溶化技術とし て開発されたのが水熱処理プロセスである*3)~*5)。

水熱反応の原理

水熱反応とは、一般に常圧の水の沸点(100℃)か ら臨界点(374℃)までの範囲の高温高圧水を用いて 行う反応であり、水のイオン積が大きく増加する ため、酸・塩基反応などイオンが関与する種々の反 応を加速することが知られている。

水熱反応の工業的な応用事例は数多くあり、例 えば、水晶の単結晶合成あるいはビル外装材や耐 火材用のケイカル材製造などは、大規模に工業化 されたプロセスである*6)。

本稿で紹介する水熱反応による重金属溶出抑制 プロセスは、水熱反応を利用して合成したケイ酸 カルシウム(トバモライト)の結晶で重金属を封じ 込めるという新しい発想で開発されたプロセスで あり、土壌や焼却灰等の重金属溶出量を環境基準 値以下に抑制することを目的としている。

以下に、水熱処理と常温・常圧でのセメント固化 処理における重金属溶出抑制効果の違いを比較し つつ、溶出抑制機構について考察した。

水熱処理による重金属溶出抑制効果

模擬土壌は、ケイ砂と粘土を混合して重金属類 (金属含有量として2000ppm)を添加して調製し た。重金属としては、試薬の鉛(PbO)と六価クロム (K₂Cr₂O₇)を用いた。

水熱処理は、上記模擬土壌に生石灰を12%添加し、 180℃ (飽和蒸気圧)で4時間行った。

また、比較として、常温・常圧のセメント固化処 理による溶出抑制効果を調べた。セメント固化処 理では、模擬土壌に対し20%のセメントを添加し、 常温養生を7日間および28日間行った。

溶出試験は、環境庁告示46号に基づいて行い、処

理品を2mm以下に粉砕して10倍量の水を加えて6 時間振とうし、ろ過水中の重金属類を分析した。

第1図は、鉛と六価クロムに対する水熱処理と常 温常圧のセメント固化処理の溶出抑制効果を検討 した結果である*3)~*5)。

第1図(A)に示す鉛の溶出試験結果によると、原 料模擬土壌の鉛溶出量0.4mg/Lに比べ、セメント固 化処理では2倍以上に増加した。これは、高アルカ リ条件下で鉛が再溶出したためと考えられる。一 方、水熱処理では、環告46号基準値(0.1mg/L)未満

参考文献

*1)

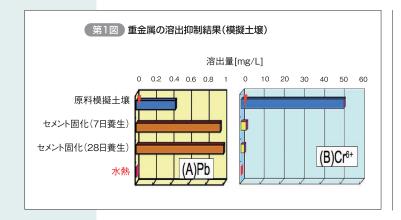
平成20年度 土壌汚染対 策法の施行状況及び土壌 汚染調査・対策事例等に関 する調査結果(平成22年3 月 環境省)

http://www.env.go.jp/ water/report/h21-04/ index.html

京都大学防災研究所年 報 48(B):395-404;

坑廃水処理の原理(独立 行政法人石油天然ガス・金 属鉱物資源機構、平成18 年)、 など

*3)


井田徹ほか:R&D神戸製鋼 技報, Vol. 51, No. 2, p.72 (Sep. 2001); Vol. 53, No. 1. p.111 (Apr. 2003) *4)

T. Ida et al: Fifth International Conference on Solvothermal Reactions, July, 20, 84 (2002)

*5)

清水孝浩ほか:CAMP-ISIJ Vol.23(2010)-546.

"水熱科学ハンドブック" p.251, p.310, 技報堂出版 (1997)

となった。

また、第1図(B)に示す六価クロムの溶出試験結 果では、原料模擬土壌の溶出量が非常に大きいが (50mg/L)、セメント固化処理によって2~5mg/L程 度まで抑制された。これに比べ、水熱処理では溶出 量は環告46号基準(0.5mg/L)未満になった。

このように、土壌汚染で超過事例の多かった鉛や 六価クロムに対し、水熱処理は大きな溶出抑制効果 を持つことがわかる。

鉛や六価クロム以外の重金属類に対しても、水熱 処理は溶出抑制効果の大きいことがわかっている。

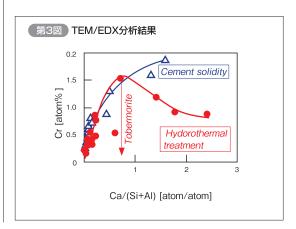
"水熱科学ハンドブック", p.297-303, 技報堂出版 (1997)

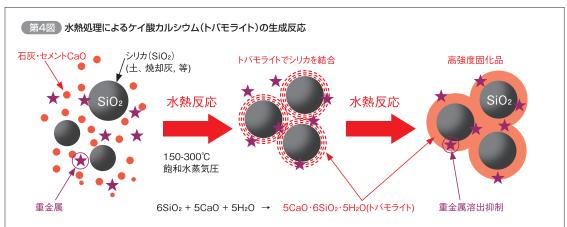
参考文献

溶出抑制機構の考察

溶出抑制の機構を解明するために、水熱処理品を XPSで分析した。その結果、第2図に示すように、 水熱処理品の最表面にはクロムが認められず、ス パッタリングした内部に存在することがわかった。 第3図は、TEM/EDXを用いて水熱処理後のクロム 元素の分布を調べた結果である。

ランダムに測定した点ごとに、クロム濃度とCa/ (Si+AI) 元素比の関係を調べたところ、次のような ことがわかった。

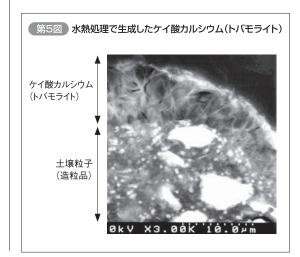

なお、水熱反応で生成するケイ酸カルシウム(ト バモライト)の結晶格子のSiはAlで置換されるの で*7、第3図のx軸はSi+Alの合計を用いた。


(a) セメント処理品: Ca/(Si+Al) 元素比が大きくな ると(カルシウムが多いほど)クロム濃度が大きい。

第2図 XPS分析結果 2.0 1.5 [atom%] 1.0 0.5 0 Spattering Depth[A] (b) 水熱処理品: トバモライト結晶に相当するCa/ (Si+Al)元素比が0.8においてクロム濃度が高い。

これらの結果から、水熱処理とセメント固化処理 の反応機構の違いが以下のように示唆される。

- (a)セメント固化処理:セメントの成分から溶解し たCa²⁺イオンとCrO₄²⁻イオンが高アルカリ条件下 で反応して、重クロム酸カルシウムとして存在す る。セメント固化処理で生成する非晶質のケイ酸 カルシウム(ゲル)は、溶出抑制効果が小さいと推察
- (b) 水熱処理:水熱反応条件下でCa2+イオンと CrO₄²⁻イオンが反応して沈殿を生成するとともに、 ケイ酸カルシウム(トバモライト)の結晶が生成す る。この結果、六価クロムが閉じ込められ、さらに


その後も成長を続けたケイ酸カルシウム(トバモラ イト)の結晶により効果的に閉じ込められる。ケイ 酸カルシウム(トバモライト)の結晶が安定なため、 いったんクロムが閉じ込められると非常に溶出し にくい。

第4図には、水熱反応によるケイ酸カルシウム (トバモライト)結晶生成と重金属閉じ込めの概念 図を示す*4)*5)。

重金属を含む原料中のシリカ(SiO₂)と石灰また はセメントなどの添加剤中のカルシウムを120~ 300℃程度の飽和蒸気の存在下で水熱処理すると、 トバモライトなどのケイ酸カルシウム結晶が生成 する*7)。

第5図は、土壌の水熱処理品を電子顕微鏡で観察 した結果である。土壌中のシリカ微粒子(写真では 白く明るい点)の周囲および土壌の造粒物の外側に 向かってトバモライト結晶が成長しているのが認 められる*³⁾~*⁵⁾。

本プロセスの特徴は、このようなケイ酸カルシウ ム(トバモライト)の結晶で重金属類を閉じ込める という点であり、重金属類の溶出抑制効果が大き く、しかも短時間で高強度な固化品が得られるとい う特徴がある*3)~*5)。

以上のように、水熱処理法は重金属溶出抑制効果 が大きいことに加え、短時間で高強度な構造物を形 成できる技術であるという特徴を持っている。例 えば、水熱処理前に加圧成型装置あるいは造粒装置 などを組み込むことにより、石炭灰のような微粒子 (煤じん)から高強度なブロックや代替砂の水熱処 理品を製造することも可能である*3)~*5)。

水熱処理は、固形分を含む副産物や廃棄物のリサ イクルに幅広く適用できる技術である。

例えば、土木・重化学・製鉄・電力などで発生する ような、汚泥の脱水ケーキ・煤じんなどの固化・塊成 化、スラグの黄水・膨張・中性化などの対策、あるい は土壌の重金属溶出抑制などの処理に対し、水熱処 理を適用することにより、処理コストを低減しつつ 品質向上・環境改善が可能と考える。

第6図は、資源・環境・ソリューションの対象に対 し、当社が保有する主な対応技術を示している。

多くの原料・副産物・廃棄物に対応可能な各種の 分析設備および技術を有しているだけでなく、各種 の試験設備を用いて、原料の反応性試験、触媒や吸 着剤の選定試験、廃棄物からの有価物の回収試験な ども行うことができる。

当社の特徴は、各種の分析設備を使った分析・試 験技術だけでなく、シミュレーションやプロセス計 算などの解析技術を有している点であり、これらを 組み合わせることにより、今後も幅広いソリュー ションのニーズに対応していく。

第6図 資源・環境・ソリューションへの対応技術

対象

石炭 コークス 鉄鉱石 排ガス 排水 廃油 汚泥 煤じん スラグ 土壌

当社の対応技術

化学平衡計算・分子シミュレーション 化学プロセス計算 超臨界流体試験(CO2、水)

固・液・気反応試験とその解析 触媒・吸着剤の分析・性能試験 バイオマス、石炭、微生物反応試験と解析 有価物回収・リサイクル試験、FS解析 各種トラブル解明試験