Technical Report

マルチマテリアル構造に対応した 異材接合部の強度評価技術

近年、輸送機分野において、地球温暖化防止や地球環境保全の観点 から燃費・排ガス規制が年々強化されている。また、モーターや電池の 搭載による重量増加を補うために、自動車ボディの軽量化が重要な課 題となっている。その解決方法の一つとしてより高強度または軽量な部 材を適材適所に使うマルチマテリアル化への取り組みが必須になって いる。

マルチマテリアル化の実現には、鉄とアルミニウム合金やマグネシウ ム合金などの軽量金属材料との金属材料同士の異材接合のみならず、 さらに軽量化が期待できる樹脂材料や炭素繊維強化複合材料 (CFRP)との接合までもが求められてきている。これら部材の接合方 法としては、従来から多用されてきたスポット溶接のような溶融接合が 適応できない組合せが多く、機械的接合法(SPR、FDS® など)や接 着、それらの併用など多岐にわたり、各種の接合部に対して、その接合 メカニズム、機械的・化学的特性の評価方法が課題となっている。

本稿では、まず第1報として、異材接合部の強度評価および破壊メカ ニズム評価技術とCFRP破壊挙動のCAE技術について、当社の取り 組みを紹介する。

技術本部 機械・プロセスソリューション事業部 プロセス技術部 清水 洋志

技術本部 機械・プロセスソリューション事業部 プロセス技術部 中島 伸吾

材料ソリューション事業部 材料評価技術部 やまざき しげる 山崎 秀

C-1 異材接合部の強度評価および破壊メカニズム評価技術

1.1 異材接合部の強度評価技術

自動車ボディのマルチマテリアル化が進むにともなって接合方 法も多様化しており、溶融接合、摩擦撹拌接合、機械的接合、接着 接合などが適用されている。ここでは欧州の自動車メーカーなど で実績がある機械的接合方法の一種であるSPR接合を例として、 鋼板とAl合金板のSPR接合の評価技術を紹介する。

第1図にSPRの接合工程の概要図を示す。下板側にダイを設 置しリベットをパンチで押し込むことで、リベットは上板を貫通して 下板内で径方向に押し広げられて機械的に接合される。接合強 度の代表的な評価手法として引張せん断強さ(以下、TSS)や十字

引張強さ(以下、CTS)があり、評価には静的試験に加え、衝突安 全性の観点から高速領域での評価が必要である。当社では第2 図に示す油圧式高速引張試験をもちいて、静的~10m/sec(~ 20kN)での試験を行っている。最近、より実部品に近い多点接合 試験片などでは高荷重での試験のニーズが高まっており、落すい 衝撃試験機を応用して対応している。この場合、重すい落下により 得られる大きな運動エネルギーを試験片に作用する引張負荷に 変換させる機構となっており、1~10m/sec(10~50kN)の試験 に対応可能である。当社では顧客ニーズに応じて、2種類の装置 を使いわけ、高速領域の特性評価を行っている。今後、より高精度 な特性を取得できる装置の導入を行う予定である。

1.2 異材接合部の破壊メカニズム評価と 強度予測技術

1.2.1 メカニズム評価

第3図に各種 SPR 接合試験片を試作し、静的に TSS を評価した 結果を示す。TSSは下板にAl合金板を用いた方が高く、また鋼板の 強度区分に対するTSSの影響は、下板にAl合金板を用いた場合 はわずかであるが、下板に鋼板を用いた場合は鋼板の強度が高く なるほどTSSが低下する傾向にある。SPR接合試験片の破壊モー ドはリベット抜け、母材破断、リベット破断などが想定されるが、本 試験ではいずれもリベット抜けで破壊した。TSSはリベットの下板内 の径方向への広がりの度合い(インターロック量、第1図参照)に 大きく影響されると考えられる。そこで、TSSとインターロック量の関 係を調査したところ、第4図に示すように両者は比例関係にあり、接 合強度支配因子としてインターロック量で示される機械的なかみ合 い量が大きく寄与していることが明らかである。このことから、SPR 接合は下板が高強度材の場合のようにインターロック量が小さくな る接合には適さず、接合の方向に制限がある事がわかる。

また、接合試験片の強度試験中のひずみ分布の可視化は、破壊 メカニズムの検討、FEM解析の精度向上およびモデル最適化に 有用である。第5図に可視化手法のひとつであるデジタル画像相

マルチマテリアル構造に対応した異材接合部の強度評価技術 Technical Report

関法の試験状況を示す。試験片にあらかじめランダムパターンを 付与しておき、2台のビデオカメラで撮影した画像のパターンマッ チングを行い局所的な変位を計測することで、接合部の外面ひず み分布を連続的に測定することが可能である。なお、デジタル画像 相関法は画像撮影に高速度カメラを用いることで10 m/secの高 速引張試験におけるひずみ分布の連続測定も可能である。第6図 (a)に最大荷重時の表面ひずみ分布の計測事例を示す。接合部に おけるひずみ(応力)集中部の状況が明瞭に確認できている。

1.2.2 強度予測技術

CAE (FEM解析) 技術を用いた接合強度および破壊モードの 予測は、開発プロセスの短縮や破壊メカニズムの検討に有用な手 法である。第6図に引張せん断試験の最大荷重発生時における外 面ひずみ分布とFEMによる解析結果の比較を示す。実測値と解 析値はよく一致しており、実現象の把握のみならず、FEMの精度 検証にも有効な手段となり得る。第7図にTSSにおける実測と解 析の荷重-ストローク線図の比較を示す。両者はよく一致しており、 FEMによる接合強度の予測も可能であると考えられる。また、第8 図はFEM解析による最大荷重時における断面のMises応力分 布を示している。FEMを用いることにより、実測が困難な内部の応 力分布を把握することも可能となる。

Technical Report C マルチマテリアル構造に対応した異材接合部の強度評価技術

1.3 接着剤併用SPR接合部の強度評価技術

接着接合は広範囲の材料の接合が可能なことや板間の絶縁に よる異種金属接触腐食防止が可能なことなどから、近年、異材接合 の接合方法として注目されており、接着接合および接着剤とリベット などを併用した複合接合は、今後適用が広がると予想される。第9 図にSPR接合、接着接合(エポキシ系接着剤)および接着剤とSPR 接合を併用した試験片を試作し、静的にTSS および CTS を調査し た結果を示す。試験初期における線図の傾きが大きいほど剛性に

優位であり、また線図の面積が大きいほど破壊に要するエネルギー が大きく、耐衝突特性に優位と考えられる。したがって、接着接合は 剛性に優位であるが、耐衝突特性はSPR 接合が優位である。また、 接合強度はいずれもTSSの方がCTSよりも大きいが、接着接合は 特にTSSに比べてCTSが低く、はく離方向の荷重に弱いことがわ かる。接着剤併用SPR接合は、接着接合とSPR接合の利点を共に 有しており、複合接合による効果が明らかである。また、接着接合お よび接着剤との複合接合のFEMによる接合強度および破壊モード の予測技術についても技術開発を進めている。

2.1 背景

航空機、自動車に対して燃費向上などを目的に複合材料(CFRP・ GFRP)を適用する事例が増加している。一方で複合材料は従来用 いられてきた金属材料とは異なる複雑な材料挙動(特に損傷破壊挙 動)を示すことが知られている。製品部品の最適設計や開発コスト低 減のためには、この損傷破壊挙動を十分に把握する必要があるが、 実験のみでは複雑な挙動を理解することは難しく、合わせてCAE (FEM解析)により応力状態や各部位の損傷破壊を把握することが 必要と考えている。ここでは、CFRP積層材を取り上げ、層間破壊靱 性試験と静的な損傷破壊挙動のFEM解析技術を紹介する。

2.2 層間破壊靭性試験

層間破壊特性はCFRP 積層材にとって重要な性能指標であ り、静的な損傷破壊挙動を再現するには必要となる特性である。こ こでは予き裂を挿入した試験片を用いて静的層間破壊靭性試験 (モードI、II: 第10図(a)参照)を実施した。第10図(b)にモード IとモードIIの層間はく離き裂進展抵抗を示す。損傷発展中の層 間破壊靭性値GIR、GIRはき裂長さ∆aとともにはく離開始時点で の層間破壊靭性値Gic、Gicより大きくなり、いずれのモードにお いても、き裂が進展しにくい特性となっている。

第12図 解析モデル

2.3 CFRP破壊挙動とFEMモデリング

CFRP積層材の損傷破壊は繊維破断・母材破断・層間はく 離に分けられ、その挙動は非線形であり荷重方向でも変化する。 また積層パターンや応力状態の影響も大きく、これらを正確に表 現する損傷破壊挙動モデルは現在も研究が進められている。

ここではCFRP積層材の損傷破壊挙動をより詳細に再現する ためにCFRPはLindeらのモデル*1)を用いた。層間はく離挙動は 粘着モデルを使用し、2.2節で得られた損傷発展中の層間破壊 靭性値GIR、GIRを使用した。

2.4 静的破壊FEM解析

FEM解析対象は、第11図に示すボルト接合部を想定した接合 部静的強度試験とした。解析モデルはソリッド要素および粘着要 素を使用した(第12図参照)。

接合部における強度試験技術、可視化技術、CAE技術の代表的な事例について紹介した。マルチマテリアル化への取り組みにおい ては、多種多様な素材や接合方法の適応が検討されており、それらの接合部の強度評価は必須の課題である。特に強度試験では、素 材の高強度化や複雑な接合部形状のために、強度把握および破壊メカニズム解明には、試験の高荷重化や破壊過程の可視化が重要 な技術となる。

当社では、目的に応じて強度評価技術、材料評価技術、CAE技術、可視化技術を組合せて、総合力で課題解決の技術支援を行える よう技術開発を進めている。

第2報では接着接合部について、実環境における経年劣化メカニズムの解明および予測技術の確立に向けた取り組みについて報告 する予定である。

参考文献 *1) Linde P. et al.:ABAQUS Users' Conference 2004

マルチマテリアル構造に対応した異材接合部の強度評価技術 Technical Report

第13図(a)にボルト結合部を想定したFEM解析と試験結果の 荷重-変位線図を示す。荷重-変位線図は試験結果とよく一致して おり破壊挙動を再現できている。また第13図(b)および(c)にボ ルト穴周辺の損傷破壊状態の試験結果とFEM解析結果を示す。 試験では表層が層間はく離しCFRPが損傷破壊しており、FEM 解析でも同様に層間はく離しCFRPに高い応力が生じる結果と なっている。

以上よりCFPR積層材に対してCFRPの損傷破壊と層間はく離 挙動をモデル化することで静的な損傷破壊挙動をFEM解析にて 再現できた。

このFEM解析技術は動的な破壊現象-例えば落下衝撃問題: にも適用できる(第14図参照)。

これらFEM解析技術を設計・試作段階および実験評価段階 に活用することにより、CFPRの損傷破壊状況を予測・可視化し、 評価分析を推し進めることができると考えている。