

近年、地球環境保全の観点から車両の電動化が加速しており、車載用二 次電池として高エネルギー密度のリチウムイオン電池が採用されている。電 気自動車(EV)の課題である航続距離の長距離化を実現するため、電池の さらなる高容量化、高エネルギー密度化が要求されている。電極設計の観 点では、高容量、高電圧となる活物質の使用、合材層の活物質比率の増加、 合材層の厚塗りと高密度化などにより電池の高エネルギー密度化が図ら れている。加えて、電池パックの部品点数低減による軽量化の観点から、電 池セルの大型化も進められており、100Ahを超える大容量セルが実用化 されつつある。

本稿では、当社が注力するEV設計支援のための評価技術として、EV向

けの高容量電極、大型電池セルの試作技術、および大型電池セルの劣化評

価、充放電時の電極の膨張にともなう電池セルの変形可視化、圧力変化計

測などの非破壊評価手法について紹介する。

EV・電池プロジェクト室 林良樹

技術本部 EV・電池プロジェクト室 坪田 隆之 E-2 EV向け大型電池セルの試作技術

当社ではコインセルなどのラボ用小型電池から、第3図に示す 実機形状のテスト用電池の試作が可能である。サイズや形状を比 較的自由に設計できる積層型ラミネート型電池をはじめ、円筒型 の18650型電池、21700型電池、角型電池など捲回型電池の作 製にも対応している(第4図)。NCA正極とグラファイト負極をもち

第2図 当社標準活物質の放電曲線 5.0

E-1 EV向け高容量電極の試作技術

リチウムイオン電池の正極材料である層状酸化物LiCoO2はモバ イル機器に広く使用されてきたが、希少金属であるCoの低減の観点 から、Li (Ni_{1/3}Co_{1/3}Mn_{1/3}) O₂ (NCM111) やLi (Ni_{0.8}Co_{0.15}Al_{0.05}) O₂ (NCA)が開発されてきた¹⁻³⁾。NCM111における充放電にお いて優先的に起こる酸化還元反応はNi²⁺/Ni⁴⁺であることから、さ らなる高エネルギー密度化のためにNiの比率を高めたLi (Ni_{0.5}Co_{0.2}Mn_{0.3}) O₂ (NCM523), Li (Ni_{0.6}Co_{0.2}Mn_{0.2}) O₂ (NCM622)、Li(Ni_{0.8}Co_{0.1}Mn_{0.1})O₂ (NCM811)の適用検討が 進められている4,5)。一方、負極材料としてはグラファイトが主にも ちいられているが、高エネルギー密度化のために、グラファイトより も理論容量の大きいSi、SiOといった合金系負極の開発と実用化 が進められている^{6.7)}。当社ではこれらを標準材料として保有して おり、ドライルームに設置された各種混錬機により適切にスラリー

化し、連続精密塗工機により所定の目付量にて塗工した後、乾燥 炉にて乾燥、ロールプレスにより密度調整を行うことで、Si系負極 を始めとするさまざまな電極を試作できる。試作工程の例を第1 図に、当社標準材料をもちいた電極の放電曲線を第2図に示す。

特にEV向け電池の場合には薄膜旋回型高速ミキサー(フィル ミックス:プライミクス社製)をもちいた連続混錬処理により、分散 性の高い大容量のスラリーを一括処理にて作製する。さらに電極 搭回機により円筒電池の円筒型捲回電極、角型電池用の扁平捲 回電極の試作が可能である。これら電池試作設備はドライルーム 内に設置されており、低露点環境下にて安定した品質で、ご要望 に応じた設計の電極を試作している。また、熱電対などのセンサー を電池内部に仕込む特殊電池試作にも対応している。

スラリー作製

涂丁• 乾燥

密度調整(プレス)

第4図 積層電極(左)、捲回電極(右)

EV向け大型電池試作技術、電池評価技術 Technical Report E

いた20Ah級角型電池セルの充放電容量を第5図に示す。 NCM111 正極とグラファイト負極をもちいた30Ahラミネート電 池セルの放電レート特性を第6図に示す。5Cレートでの放電にお いても、28.6Ah(容量維持率95.7%)と良好な出力特性を示して いる

E-3 充放電曲線解析による非破壊劣化状態解析技術

リチウムイオン電池の高温保存における容量低下の原因の1つ として、正極と負極の充放電域のずれ(容量ずれ)があり、この主 要因は負極上の被膜にリチウムイオンが捕われ不活性化するため と考えられる8)。当社では解体調査による単極容量や反応抵抗な どの電気化学評価に加え、被膜の構造解析(大気非開放XPS+ TOF-SIMS)や活物質の結晶構造変化(Cs-STEM)を複合した詳 細な解析が可能であるが、非破壊での状態解析も必要とされてい る。ここでは非破壊劣化状態解析の一例として、充放電時の容量 を電圧で微分したdQ/dV曲線より、充放電中の活物質の相転移 点に対応するピークを得ることで、劣化解析した事例を紹介する。 正極活物質にNCM111、負極活物質にグラファイトを使用し試作 したラミネート型電池について、SOC100% (State of charge:

充電状態)に調整後、70℃環境にて6週間保持する保存試験を 実施した。保存試験前後のdQ/dV曲線解析の結果を第7図に示 す。当社保有の単極充放電データベースより、負極のステージ4構 造に由来するピーク(A)、正極および負極のステージ3構造に由 来するピーク(B)を同定した。一方、保存試験後では電池容量は 初期に比べて49%と大きく低下したが、ピーク(A)とピーク(B)は 高電圧側ヘシフトした。第8図に示すように正極と負極の使用範 囲にずれが生じたため、正極の利用範囲がピーク(B)を含まない 領域となっている。そのため、保存試験後のピーク(A)は負極のス テージ4構造であり、ピーク(B)は負極のステージ3構造に由来と なった。このように劣化電池のdQ/dV曲線解析により非破壊にて 正極、負極の容量ずれを捉えることができる。

E-4 充放電時の電池セルの膨張収縮可視化技術、反力計測技術

リチウムイオン電池は充放電にともない膨張・収縮を繰り返す ことが知られている。理論容量の大きいSi、SiOなどの合金負極活 物質を使用する場合、Li吸蔵時の体積膨張が最大4倍と大きい ことから、高容量となるEV 電池セルにおいてはその膨張収縮もま すます顕著となる。車両搭載時にはモジュール化して電池パックフ レームに固定されるが、エンドプレートやバインドバーなどの拘束 部材に対して加圧、減圧が生じるため、使用中の安定的な固定や 拘束部材の耐久性を考慮した電池パックの安全設計のために、 充放電中の電池セルの膨張収縮の挙動を把握することは、筐体 設計において重要な観点である。

4.1 電池セルの膨張収縮可視化技術

電池セルの変形挙動は3D画像相関法により可視化する。3D 画像相関法とは、サンプルに白と黒のランダムパターンを塗布し、 変形にともなうパターンの移動を2台のカメラで撮影して画像処

理を行うことで、3次元的な変位を可視化する手法である。 第9図に3D画像相関法より捉えた、充放電中の角型電池セル の変形挙動を示す。充電にともない電池セルの中央付近が膨張 し、放電では収縮して充電前の形状に戻っていく様子が可視化さ れている。

4.2 電池セルの反力計測技術

車両搭載時には、電池セルはエンドプレートなどで拘束される が、充放電にともない圧力変化(反力)が生じる。拘束下でのラミ ネート型電池セルの圧力変化計測事例を第10図に示す。充電に ともない徐々に圧力が高く強くなり、放電では圧力が低下する様子 を明確に捉えている。

このように3D画像相関法による電池セルの変形挙動と圧力変 化を電池パック設計にフィードバックすることで、電池パックの安 全設計が可能となる。

第9図 3Dデジタル画像相関法による電池セルの変形可視化

第10図 充放電における電池セルの反力計測

EV向けの高容量電極試作技術、電池セル試作技術を紹介した。これらの電池をもちいて電池モジュールの試作も可能である。さら にEV向けではBMS (Battery management system)を搭載した電池モジュールの提供も行っており、熱マネジメント評価用の試験 体として注目いただいている。充放電曲線解析、GITT法による非破壊電気化学評価については、EVのみならず定置型蓄電池システム の劣化診断、リユース電池の評価に寿命予測シミュレーションと併せてご活用いただきたい。充放電中の電池セルの膨張収縮の可視 化、反力計測技術、別稿で紹介した発熱計測技術は、安全な電池設計と使用に関して重要な制御因子であり、実測による把握が必要 である。

今後も電池試作・特性評価技術によりEVや定置型大型電源の研究開発を支援し、持続可能な社会の発展に貢献したい。

- 参考文献 *1) N. Yabuuchi, et al.: J. Electrochem. Soc., 152 (7) (2005) A1434. *2) N. Yabuuchi and T. Ozuku : J. Power Sources, 146 (2005) 636. *3) C.H. Chen, et al. : | Power Sources, 128 (2004) 278 *4) H.-J. Noh, et al. : J. Power Sources, 233 (2013) 121. *5) A. Verma, et al. : J. Electrochem. Soc., 164 (13) (2017) A3380. *6) Y. Hwa, et al. : J. Power Sources, 222 (2013) 129. *7) K. Pan, et al. : J. Power Sources, 413 (2019) 20. *8) 西内ほか:第57回電池討論会、3C05(2016). *9) 坪田ほか:神戸製鋼技報 Vol.65(2015), No.2, p.92-97.
 - *10) 山上ほか:神戸製鋼技報 Vol.64 (2015), No.2, p.99-104.

