

トレージョン技術 大ノスケール領域における 熱伝導シミュレーション技術

近年、ナノテクノロジーの発展にともない、微細 な構造や組成制御による材料の機能発現や高機 能化、小型化が検討されている。特に、ナノスケー ルの空隙を有するナノ多孔質材料は、バルク材料 に比べて著しく熱伝導性が低いことから、断熱材 や熱電変換材料への応用が期待されている¹⁾。

ナノスケールにおける熱や電気輸送特性は、原 子レベルの凹凸や孔などの構造が大きく影響する ことから、デバイス設計においてその輸送メカニズ ムの理解が重要となる。通常、マクロスケールでは 熱流束が温度勾配に比例すると仮定して良く

(フーリエの法則)、熱は拡散輸送として表すことができる。これは、熱伝導のキャリアであるフォノン(格子振動)の平均自由行 程に比べて対象スケールが十分大きいため、粒界や欠陥、空孔などによる散乱効果が均質化されるためである。一方、フォノン の平均自由行程と原子レベルでの構造の大きさが近いナノスケールでは、熱の輸送が微細構造により大きく影響される。

これら伝熱挙動は微細かつ短時間であるため、さまざまな実験的手法2-3)に加えて、数値シミュレーションによる検討4-9)が幅 広く行われている。本稿では、代表的なシミュレーション手法の概要を紹介した上で、分子動力学法(Molecular Dynamics: MD)による解析事例を紹介する。

F-1 さまざまなナノスケールの熱伝導シミュレーション

ナノスケールの熱伝導シミュレーションの中で、代表的な手法と して挙げられるのが MD 法であろう。これは、原子同士の相互作用 をポテンシャル関数で表現し、ニュートンの運動方程式を逐次積 分することで格子振動の伝搬挙動を評価するものである。

ここに、m:原子質量

U:位置xに依存するポテンシャル関数

- **ν**:原子速度
- *t* : 時間
- 添え字i:原子の通し番号

MD法は各原子の動きを模擬するため、最も基礎的なアプローチ であり、得られる情報量も多い。

一方、フォノンを"粒子"としてモデル化し、輸送方程式によって 挙動を計算する手法4)も有力である(ボルツマン輸送方程式)。こ の手法では、群速度や緩和時間を仮定した上で、フォノンの輸送・ 衝突・緩和を時々刻々計算する。支配方程式は、

ここに、f_ω:フォノンの分布関数 v:フォノン群速度 f⁰ω:平衡状態の分布
 τ:緩和時間

が使用される場合が多い。f⁰uやては入力パラメータとなるが、MD 法に比べて計算負荷が小さいため、幅広く適用されている。 全く別のアプローチとして、本来マクロスケールで使用される フーリエ則に緩和時間を追加した"修正フーリエモデル"なども提 案されている。代表的なtwo-lags model5)では、熱フラックスを フーリエ則:

$$\mathbf{q} = -k \frac{\partial T}{\partial \mathbf{x}} \tag{3}$$

ここに、k:熱拡散率 T:温度

の代わりに、

$$\mathbf{q} + \boldsymbol{\tau}_q \,\frac{\partial q}{\partial t} = -k \left[\frac{\partial T}{\partial \mathbf{x}} + \boldsymbol{\tau}_T \frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \mathbf{x}} \right) \right] \tag{4}$$

ここに、
$$\tau_q$$
:フラックスの緩和時間
 τ_T :熱収支の緩和時間

として計算される。ここでは適切な緩和時間設定が重要となるが、 マクロモデルとの接続が容易であることから、有限要素法によるシ ミュレーションの普及にともって近年適用範囲が広がっている。こ れらのアプローチについて、対象スケール、入力パラメータ例など を第1表にまとめた。

F-2 MD法によるナノ多孔質材料の熱伝導評価事例

前述の通り、ナノ材料に対する熱輸送特性評価やメカニズム探 索には、MD法が有力な手段としてもちいられてきた⁶⁻⁹⁾。なかでも、 3次元の構造を有するナノ多孔質 Si 6,7)やPbTe 8)、固体 Ar 9)は、 実測との比較やメカニズムについて、詳細な議論がなされている。 そこでは、伝熱方向の厚みや系の温度に加え、空孔のサイズ、形 状、配置、表面積比などが熱輸送特性を決定する重要なパラメー タであることが指摘された。しかしながら、複数の空孔が配置され た系において、それぞれの因子がどのような影響を及ぼすかは不 明な点も多い。

ここでは、さまざまな空孔率、空孔サイズ、配置を持つナノ多孔 質薄膜の非平衡分子動力学計算を実施し、それぞれが熱輸送特 性(熱伝導率)に与える影響を系統的に調べた事例を紹介する。 本計算では複数の空孔を2次元的に配置したメッシュとすること で、これらの効果を明確化した。なお、比較のためにフーリエ則に 基づく有限要素法(Finite Element Method)解析を合わせて 検討した。

2.1 計算方法

計算条件の概要を第2表に示す。熱伝導率計算には直接法を 採用した。即ち、シミュレーションセルの両端にそれぞれ高温と低 温の熱浴を設置し、定常状態に達するまで(線形の温度勾配が形 成されるまで)計算を続けた。その後、セル両端の投入または吸収 エネルギーの時間微分から熱フラックスを求め、熱伝導率を算出 した。

ナノスケール領域における熱伝導シミュレーション技術 Technical Report

第1表 ナノスケールにおける解析手法の例

	<u>分子動力学法</u>	<u>ボルツマン輸送方程式</u>	<u>修正フーリエモデル</u>				
対象スケール	~10[nm]程度 (大規模計算で~100[nm])	1 - 100[nm]	1 - 100[nm]				
入力パラメータ	原子間相互作用	フォノン輸送特性 (状態密度、比熱、群速度、緩和時間)	緩和時間、熱拡散率				
備考	 ・厳密だが大規模計算が 必要な場合が多い 	 ・厳密だが入力パラメータが必要 ・独自プログラムを使う場合が多い 	 ・マクロモデルとの接続が容易 ・緩和時間の選定が必要 				

$$\lambda = -\frac{q}{\nabla T}, \quad q = \frac{1}{A} \frac{dE_{out}}{dt} \quad \dots \dots (5)$$
ここに、 λ : 熱伝導率 [W/(m*K)]
 q : 熱流束 [W/m²]
T: 温度 [K]
 E_{out} : 高温部と低温部のエネルギー差 [J]
A: 断面積 [m²]
 t :時間 [s]

第1図(a)-(c)に一例として示すように、空孔のサイズ、数密度 および配置が異なる構造を採用し、これらの違いが熱伝導率に与 える影響を調べた。なお、空孔率に関わらず、格子定数は全て等し いとした。

第2表 MD法における計算条件

基準セルサイズ [nm]	11×6.5×2.7
モデル形状	図1(a)~図1(c)
初期原子配置	面心立方格子構造
温度制御方法	Velocity scaling法
時間ステップ∆t [fs]	1.0
高温部温度 [K]	30
低温部温度 [K]	10
原子間相互作用	Lennard-Jonesポテンシャル(Ar)

2.2 計算結果

正方格子状に空孔を配置した場合の熱伝導率(バルクの値で 規格化)と空孔率の関係を第2図(a)に示す。なお空孔サイズは直 径2.2[nm]で一定とした。フーリエ則に基づくFEMでは、空孔率 の増加にともって熱伝導率が単調に低下しており、その減少幅は 概ね空孔率に比例する「線形則」に沿った結果となった。一方、 MDでは空孔率が14%を超える辺りから急激に熱伝導が低下す る様子が見られるなど、非線形な挙動を示した。また、空孔率を 25%に固定して空孔サイズを変化させた場合では(第2図(b)参 照)、FEMでは空孔サイズによらず熱伝導率はほぼ一定となり、線 形則と矛盾しない結果となる。一方、MDではFEMよりも熱伝導 率が著しく低く、空孔サイズが小さくなるほど低下する傾向が見ら れた。このように、ナノスケールにおける熱伝導は、空孔率だけでは なく空孔サイズも大きく影響されることが示唆された。

第3図に空孔配置が異なる場合の熱伝導率の比較を示した (空孔サイズ・空孔率一定)。本計算(MD)では正方格子状、千 鳥格子状、およびランダムのいずれも概ね等しい熱伝導率が得ら れ、線形則と同じ挙動を示す結果となった。従って、空孔の配置は 必ずしも熱伝導率に影響を及ぼさないと考えられた。

既報では、ナノ多孔質材料の熱伝導率に影響を与える因子とし て、空孔間ネック幅(dneck)によるフォノン平均自由行程の制限効

果7)や、空孔表面によるフォノン散乱効果6)などが議論されてき た。そこで上記の熱伝導率計算結果とこれらの因子の相関を見る ことで、どちらが本質的に影響を与えるか評価する。

フォノン熱抵抗(熱伝導率の逆数)は、フォノン群速度および平 均自由行程を用いて式(6)のように表される3)。

$\frac{1}{\lambda} =$	$=\frac{3}{C_v v_g}$	$\frac{1}{l_p}$			 (6)
ここに	$C_v: \mathbb{H}$	熱			
	$v_g: 7$	ォノン群速度			
	1. : 77	トノンの平均国	自由行程	1	

したがって、dneckがフォノンの平均自由行程し、を制限するのであ れば、フォノン熱抵抗とdneckの逆数は比例関係になると予想され る。第4図(a)にこれらの関係を示す。dneckが比較的大きい場合は 概ねフォノン熱抵抗と比例関係にあるが、小さい場合(即ち空孔率 が高い)にはずれが生じていることが分かる。これは、空孔率が高 い場合においては、必ずしもフォノンの平均自由行程が熱伝導を 律速する訳ではないことを示している。

既報10)によれば、表面散乱効果が熱伝導を律速する場合、フォ ノンー空孔散乱の緩和時間から、熱伝導率は空孔表面積の逆数 に比例することが示されている。即ち、

$$\lambda = \beta \, \frac{\Psi(\phi)}{A/4} \tag{7}$$

ここに、λ:熱伝導率 *β*:定数 Ψ: 空孔率 φ に 依存 する 関数 A:表面積

本稿では、ナノスケールにおける熱伝導シミュレーション手法について概説し、それぞれの特徴を簡単にまとめた。また、ナノ多孔質 材料を対象としたMDによる評価事例を紹介した。特に、さまざまな空孔率、空孔サイズ、配置を持つナノ多孔質薄膜、空孔のサイズ と配置が熱的特性に及ぼす影響について述べ、空孔表面積や空孔間との相関について論じた。このように、フォノンの平均自由行程 と原子レベルでの構造の大きさが近いナノスケールでは、熱の輸送を理解する上でMDをはじめとするシミュレーションが有効な手 法となり得る。

参考文献 *1) Jinyao Tang et al., Nano Lett. 2010, 10, 4279-4283.

- *2) T.K. Hsiao et al., Nature Nanotechnologies. 8 (2013) 534-538.
- *3) W. Liu, et al, Appied Physics Letter 84 (2004) 3819-3821.
- *4) 堀琢磨、Ph.D thesis, University of Tokyo (2015). *5) N. Araki, Jour. HTSJ, Vol. 43, No. 178 p.2 (2004).
- *6) 永井大資、博士論文(九州工業大学、2010年).
- *7) Yuping He et al., ACS Nano vol. 5, no. 3, 1839-1844 (2011).
- *8) 堀琢磨、塩見淳一郎、第50回伝熱シンポジウム講演論文集(仙台、2013年).
- *9) R.Lukes et al., Microscale Thermophysical Engineering, Vol.8, Issue 4, (2004) 341-359.
- *10) K. Termentzidis et al., Physical Review B 79, 214307 (2009).

11 [nm]

ランダムに配置

11 [nm]

千鳥格子状

空孔配置

*空孔率は25%で一定、表面積一定とする。

0.2

0.1

第4図(b)にこれらの関係をプロットした。いずれの表面積値にお いても両者は比例関係が見られており、本計算においては空孔表 面積が熱伝導率を決定する重要な因子であることが示唆された。

以上のように、さまざまなパラメータを変えたMD計算を系統的 に実施することで、ナノスケール熱伝導における影響因子の評価 が可能となる。本解析はあくまでモデル材料における基礎検討で あるが、このような MD 法の結果をベースに、ナノ多孔質材料の設 計最適化への応用や、見積もられた緩和時間をもちいてボルツマ ン輸送方程式や修正フーリエ則による有限要素法解析への展開 等も期待される。