

近年、これまでの試作実験・評価、理論、シミュレーションにデータ サイエンスを組み合わせるマテリアルズ・インフォマティクス(Materials Informatics, MI) 技術が注目されている。この技術は機械学習をもちいた 内挿補間的な予測により、効率的に新材料の材料探索をおこなうことができ る。MI技術を適用した材料探索は、実験やシミュレーションなど大量の材料 データを必要とし、データ取得が大きなウェイトを占めるため、効率的に材料 データ取得するための実験やシミュレーション方法が各種検討されている。

効率的な材料データ取得方法は、ハイスループット手法と呼ばれ、実験 的なアプローチと計算的なアプローチの2つがある。前者には、①従来手 法の効率化、②コンビナトリアル実験があり、後者の代表は第一原理計算 などの材料シミュレーションである。これらアプローチで取得したデータ群 を、機械学習による最適化技術を活用し、網羅的なスクリーニング(バー チャルスクリーニング)や最適条件探索(アクティブラーニング)により、さ らに試作実験の工数を減らし効率化をはかることができる。それ以外の データ取得方法として、公開データベースの活用もある。例えば、海外では、 無機材料の第一原理計算の計算結果のデータベースである「Materials Project」がある¹⁾。国内では、物質・材料研究機構 (NIMS) の物質・材料 データベースである「MatNavi」があり²⁾、高分子、無機材料、金属材料な どのデータを教育、研究開発を目的にサービス提供されている。

本報では、ハイスループット手法のデータ取得方法に関して、当社の多く の実績の中から、以下3つの事例について紹介する。

- ・従来技術の効率化
- ・コンビナトリアル実験(薄膜材料、バルク材料)
- ・第一原理計算による材料シミュレーション

計算科学センター 古賀 健治 技術本部 材料ソリューション事業部 機能材料技術室 加々尾 慎哉

技術本部 計算科学センター

かの ごういち 行野 日一

蛭田 優貴

技術本部

計算科学センター

A-Ⅰ ハイスループット手法

1.1 従来手法の効率化

従来手法では、1つの成分組成につき1個の試料を作製し、そ の特性を調べるために評価をおこなう。試料作製・評価は、成分

組成毎に繰り返して、データを取得するため、多大な時間と労力、 コストが掛かる。具体例として、通常プロセスの試作実験方法を第 1図に示す。真空溶解法やアーク溶解法をもちいて、所定の成分 組成につき1個の溶製材を作成し、熱間鍛造でビレットに加工、

塑性加工(伸線、熱間押出、圧延(熱間・冷間)、熱処理)という 工程を経て、評価材(線材、丸棒、板材)で評価をおこなう。

従来手法を効率化するハイスループット手法は、プロセス工程 を時間短縮し、効率化することに重点をおいている。例えば、微 量成分をコントロールした複数の溶製材作製やAM (Additive Manufacturing) 技術、金属3D積層造形法(第2図) をもちい て、1度に複数の素材を作製し、塑性加工や熱処理条件のバリ エーションを増やす、あるいは成分組成を傾斜的に変化させた素 材を作製するアプローチがある3)-6)。

1.2 コンビナトリアル実験

コンビナトリアル実験は、1つの試料内に、組成の異なる複数 の相を共存形成することで、短時間に効率的に材料情報を収集 できる。本方法は大量のデータを処理できる機械学習とも親和性 が高いため、注目されている。コンビナトリアルとは、「組合せ」を 意味しており、1つの試料内に多種多様な組み合せの材料を作製 し、効率的に評価をおこなうことをいう。ここでは、当社で実績あ るコンビナトリアル実験として、薄膜材料および粉末材料の試料 作製方法の事例を紹介する。

1.2.1 Ce-Irの薄膜材料の事例

2元系の薄膜材料として、電子放出材料Ce-Irの試料作製の 事例を説明する。

薄膜材料では、濃度勾配を持たせた試料を薄膜上へ成膜し、 一枚のウエハ上で多種類のサンプルを調製でき、かつ基板温度 や分圧を調整して合成条件に傾斜変化を与えることができる。 Ce、Irの金属ターゲットを準備し、スパッタリング法をもちいてサ ファイア基板上にCe-Irの組成傾斜の付いた膜の成膜をおこなっ た。また、特性評価をおこなうために、ラインアンドスペースの固定 メタルマスを使用して、電極を形成した。

コンビナトリアル薄膜材料の特性評価は、組成変化、条件の傾 斜変化による物性変化の多くの情報を取得できるため、網羅的に 評価できる手法が求められる。

本報で作製したCe-Irの組成傾斜膜の特性評価は、結晶構造 のマッピング評価ができるXRD多点測定、組成情報が取得でき るXRF多点測定、物質の変化に伴った抵抗の変化を確認するた めにI-V測定をおこなった。第3図に(a) Ce-Irのコンビナトリア ル実験の模式図、特性評価例として、(b) XRD多点測定結果、お よび(c) XRF多点測定結果、抵抗値測定結果を示す。

第3図(b)の左上から右下の方向へ、純Irから純Ceに組成 変化させているが、組成変化に伴って、CeIr2化合物が形成され ている。Celr2はCe-Irの2元系状態図から化学量論組成の領 域が広く化合物を形成しやすいと考えられる7)。第一原理計算手 法からCelr2の形成エネルギーが他のCe-Ir化合物と比較して低 く、安定相であることも報告されている9)-10)。Celr2の組成範囲 は、Sample No.15付近であり、XRFの組成分析の結果とも対応 している。このようにコンビナトリアル実験は、組成傾斜膜を作成 することで、特定の組成領域を絞り込むことができる。

1.2.2 粉末材料の事例

圧粉体、および圧粉焼結体を対象としたバルクコンビナトリアル 実験について紹介する。バルク材においても材料探索の効率化の ために、組成、組織等が異なる反応相を、単一試料中にできるだ け多く生じさせる必要がある。本手法は、複数の元素を、さまざま な組み合わせで、かつ、さまざまな配合比で反応させることにより、 多くの反応相を生じさせることができる。

第4(a) 図に示すような外枠の内部に領域分割が可能な治具 を配置しおのおのに、粉末をそれぞれ充填した。第4(b)図に粉 末の充填状況を示す。なお、治具は8つの領域に分かれているが 単純化するため、4つの扇状の領域分割となるように充填してい る。治具を引き抜いた後、室温、圧力:490MPaの条件でCIP処 理を行い、直径30mm×厚さ2~3mmtの圧粉体を作製した。第 4(c)図に、CIP処理により固化成形した圧粉体の写真を示す。作 製試料の外観から4つの領域にきれいに分割されている。このよう な配置にすることで、4種類の粉体の領域(粉体A+E、B+E、C+ E、およびD+E)を持ち、2種類の粉体の異なる組み合わせ(粉体 A+EとB+E、粉体B+EとC+E、粉体C+EとD+E、粉体A+ EとD+E)を有する4つの界面が存在する。また、4種類の粉体の 組み合わせ(粉体A+E~D+E)を有する1つの交点を持つ。異 なる領域の組み合わせによって9つの領域を同時に形成すること ができる。A~Eの元素は、それぞれCu、Ag、Al、Zn、Snである。

粉末焼結体の作製は、接合界面反応相をえるために、圧粉体 を焼成した。圧粉体をアルミナ製容器に入れて、環状炉により、加 熱温度:600℃、加熱時間:3時間、雰囲気:N₂フローで加熱処 理を施しておこなった。また、単純に複数粉末を混合した混合粉 末をもちいて、同一条件で、圧粉体を作製・熱処理を施し、比較 用サンプルを作製した。

分析結果の一例として組織観察を取りあげる。おのおのの焼結 体からなる領域、隣接する2つの領域の界面近傍、4つの領域が 交わる交点近傍についても組織情報のデータが取得可能となる。 また、異なる相の数、およびおのおのの領域の界面における相の 分散状態を確認できる。第5図、第6図は粉末焼結体の2つの領 域の界面近傍(D+EとA+Eの界面)のSEM観察結果、および

EDX分析結果の一例を示す。SEM観察結果から、観察箇所によっ て、組織サイズが異なっており、針状化合物、球状化合物で組成 が異なる。第6図上図の黒色の粒子はAl-Cu-Zn化合物である。 白色、灰色の針状のような形状がAl-Cu-Zn-Agが含まれている が、前者がZn-Agが主成分であり、後者がCuリッチのように成 分が大きく異なる。また、第6図下図の球状粒子はCu-Znが主成 分であり、また周辺部分はZn-Ag-Snである。1つの界面だけで5 相の合金が認められる。

今回紹介したバルクコンビナトリアル実験の手法では、作製し た多元系合金の界面、および4つの領域が交わる中心部付近の SEM観察(反射電子像)において、10種類以上の相が確認でき た。単純混合した焼結では、4種類程度であり、バルクコンビナトリ アル実験の有効性が示せた。

本報では、評価の一例としてSEM観察を紹介したが、さまざま な多点測定可能な分析評価技術と組み合わせ、測定箇所の座標 位置を同一箇所の測定点でおこなうことで、結晶、組成、物性デー タを紐づけし、機械学習に適用し易いデータ収集が可能となる。

1.3 第一原理計算による材料シミュレーション

コンピュータシミュレーションは実験より、短時間でデータ取得 する手法として期待されている。第一原理計算を活用した網羅的 な材料シミュレーションは利用法の1つである。

第一原理計算は代表的なナノシミュレーションの手法であり、 実験にフィットするようなパラメータをもちいず、原子の種類と位置 だけで電子状態が計算できる。計算により、得られた電子状態か ら磁気特性、電気特性、および機械特性などさまざまな物性値を 計算することができる。

第一原理計算では、不純物の微量添加を考慮する場合、Super Cell Approximation (SCA), Virtual Crystal Approximation (VCA)、および Coherent Potential Approximation (CPA)¹¹⁾ の3つの手法がある。SCA をもちいた場合、最小単位のUnit Cell (単位胞)から不純物を微量添加した大きなマルチセルを仮定す るため計算コストが高い。また、VCAでは、計算コストはUnit Cellと

変わらないが、不純物の影響を精度は良く計算することができな い。CPAはUnit Cell内で不規則的な配置による影響を平均的に 有効媒質に置き換えることができ、合金ポテンシャルを決定するた め、合金系の計算することができる。

本報では、第一原理計算手法の1つであるグリーン関数法に 基づく、KKR-CPA法をもちいた材料シミュレーションを紹介する。 KKR-CPA法は、CPAを適用することで合金系材料の電子状態 を精度良く計算することができる。ここでは、第一原理計算による Ni-Ti合金の体積弾性率、磁気モーメントの変化ついて取り上げる。 第7図にNi-Ti合金の体積弾性率、および磁気モーメントの計 算結果を示す。第7図(a)はNiに対してTiの添加量を変化した 結果である。第7図(b)はNiとTi以外に第3元素として不純物が 存在した場合の計算結果である。

機械学習やMIは、新しい材料探索には有効な手段ではあるが、データの量や品質により、予測精度が変化するため、少ないデータで も予測精度を上げる手法が求められている。今回紹介したデータ取得技術は当社の取り組み内の3つの事例であり、MIを適用する上で 時間短縮・効率化に有効な手段である。

当社は日々、さまざまな機械学習手法をもちいた材料開発支援を行っており、さらに少ないデータを上手く活用するアプローチ (スパー スモデリング、転移学習)や深層学習による画像生成などにも取り組んでおり、今後も紹介していきたい。

- 参考文献 1) A. Jain et al.: APL Materials, Vol. 1 (2013), p.011002.
 - 2) MatNaviサービス利用約款: https://mits.nims.go.jp/agreement/MatNavi_agreement_ja.pdf 3) H. Springer, D. Raabe: Acta Materialia, Vol. 60 (2012), p.4950.
 - 4) C. Baron, H. Springer: steel research int. Vol. 90 (2019), p.1900404.
 - 5) D. Farrugia et al.: Procedia Manufacturing Vol. 50 (2020), p.784.
 - 6) H. Knoll et al.: steel research int. Vol. 88 (2017), p.1600416.
 - 7) H. Okamoto: Journal of Phase Equilibria Vol. 12 (1991), p.563.
 - 8) D. J. Fredeman et al.: Phys. Rev. B Vol. 83 (2011), p.224102.
 - 9) J. E. Saal et al.: JOM Vol. 65, (2013), p.1501.

 - 11) H. Shiba: Prog. Theor. Phys. Vol. 46 (1971),p.77.

ハイスループット実験・計算による材料データ収集 Technical Report A

No.	(単位:質量%)						
	С	0	Al	Cu	Zn	Ag	Sn
EDX1	4.2	0.6	18.7	63.2	13.2	0.0	0.0
EDX2	3.3	1.7	3.8	5.4	40.0	45.8	0.0
EDX3	4.5	0.7	16.1	70.8	7.1	0.8	0.0
EDX4	3.4	0.7	5.0	51.5	34.7	3.3	1.5
EDX5	2.5	1.9	0.0	4.0	19.7	54.2	17.8

第7図(a) Ni-Ti合金の場合、Tiの添加量(Tiの占有率)が増加 するにつれて、体積弾性率と磁気モーメントが減少する傾向を示す。 Tiの占有率が13%程度で磁気モーメントが消失している。磁化の消 失するTiの占有率付近で体積弾性率にも微小変化が認められる。

第7図(b)のNi-Ti合金に微量不純物の添加した場合は、第7 図(a)のNi-Ti合金と比較して、Tiの添加量が増加するにつれて、 磁気モーメントの変化が緩やかになる。磁気モーメントは、Tiの占 有率が13%程度で磁気モーメント消失にともなった変曲点を持 たずに、徐々に磁気モーメントが減少する。

今回、紹介した第一原理計算を活用することで磁気モーメント が消失する添加量を把握することができる。

この手法の活用方法として、例えば、磁気モーメントが向上、低下 にする添加元素や添加量の網羅多な材料探索の計算が可能となる。

10) S. Kirklin et al.: npj Computational Materials Vol. 1 (2015), p. 15010. Available from: https://oqmd.org/materials/composition/Celr2