
次世代半導体を支える3D実装技術とその評価法

昨今の半導体分野では高性能化、高速化の要求 が年々増してきており、その要求にこたえるべく、 ムーアの法則に基づき、半導体の高集積率化、微 細化、低コスト化へと技術革新を進めてきた。

しかしながら、現状の技術では回路の微細化に ついて限界を迎えつつあるため、チップを積み上げ る3D実装や水平方向に実装する2.5D実装と いった新たな実装技術が普及しつつある。

これらの部品の3D実装には新規の接合技術が 数多く使われており、それにともない、新たな分析 評価技術が求められている。

本稿では3D実装、2.5D実装基板の評価、解析

物理解析センター 技術部 物理ソリューション室

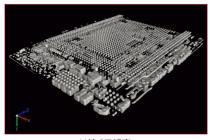
物理解析センター 椋木 新也

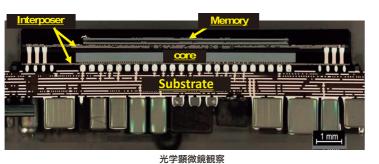
物理解析センター 解析部 関門解析室

寛侑

手法をメインに、半導体デバイスやパワーデバイスなど、さまざまな実装部品における、剥がれ、クラック、破壊、変形などの不具

合品調査や試作品の評価に対して、多種多様なメニューの中から特徴のある解析メニューについて紹介する。


A-1 パッケージの進化(3D、2.5D 実装)に求められる設計


チップレット(第1図)は、チップ内のグローバル配線の一部を 配線基板側に持たせることで、積層されたチップ間の通信を効 率的に行うためにシステム設計されたものである。その設計には、 インターポーザーやサブストレートなどのVia(ビア: 貫通孔)お よび銅配線の微細化と信頼性、高密度実装における歩留まり、 放熱経路や応力の複雑化、電気特性などの機能試験を考慮した

構造と解析手法が必要である。

また、ハイエンドの半導体では、Chip-to-Wafer方式のハイブ リッド接合をもちいた製品開発も進んでおり、接合面の各種活性 化処理、Cu電極やSiO2界面における接合強度、狭ピッチ絶縁 性、低温接合性、反りなどを考慮した設計が必要である。

第1図 3次元実装部品のX線CT観察および断面観察の事例

X線CT観察

A-2 Via接合部における断面解析

第2図はサブストレート内の約70μm径のVia接合部の中心 部を横断する形で断面試料を作製し観察したもので、銅配線と Viaの接合界面に黄色矢印で示すようなボイドが点在している。

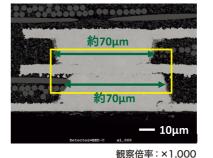
このようなVia接合部に微細ボイドや剥離、クラック等の異常

が存在すると断線につながる可能性があり、機器故障や誤動作 の原因となる。そのため、接合状態を正確に把握しておくことが重

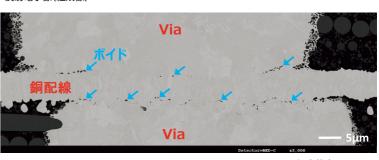
第3-1図はインターポーザー内のひとまわり小さい約40µm

次世代半導体を支える3D実装技術とその評価法 Technical Report A

径のマイクロVia中央部の断面観察結果である。 サブストレートのViaと同様、接合状態の把握が重要になる

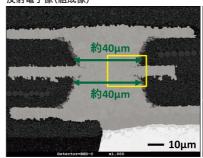

が、この拡大写真からは一見、界面のボイドはほとんど無いもの と判断される。

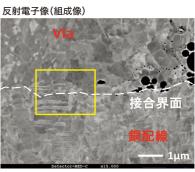
しかしながら、第3-2図に示すとおり、さらに5万倍まで拡大


すると、界面には帯状に分布するナノオーダーの微細ボイドが多 数認められる。このように年々縮小する複数のマイクロViaの中 央を狙って加工し、観察することには、高度な断面加工技術が必

第2図 サブストレート内のVia接合部の断面SEM観察

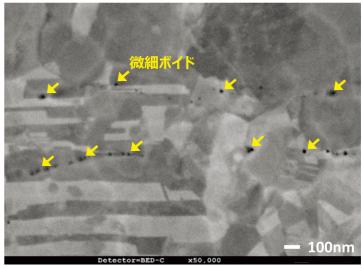
反射電子像(組成像)


反射電子像(組成像)


観察倍率:×5.000

第3-1図 インターポーザー内のマイクロ Via 接合部の断面 SEM 観察

反射電子像(組成像)


観察倍率:×1,000

観察倍率: ×5,000

観察倍率:×15,000

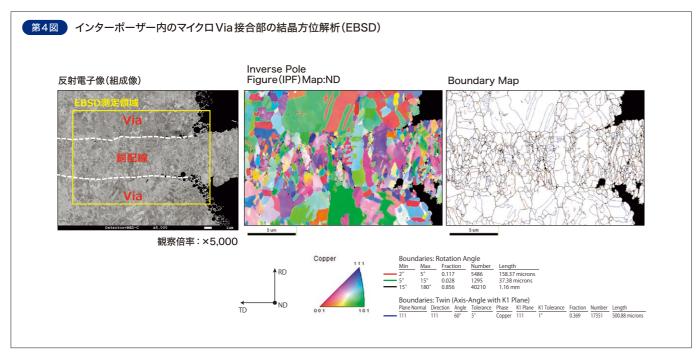
第3-2図 インターポーザー内のマイクロ Via 接合部の拡大観察

反射電子像(組成像)

観察倍率:×50,000

Technical Report A 次世代半導体を支える3D実装技術とその評価法

第4図に示す結晶方位解析 (Electron Back Scatter Diffraction: EBSD)により、界面付近の結晶方位や結晶粒の 情報を明確に得ることができる。Inverse Pole Figure (IPF) Mapでは結晶方位を色別で表示しており、Boundary Mapで は双晶や亜粒界を含む結晶粒界の情報を示している。

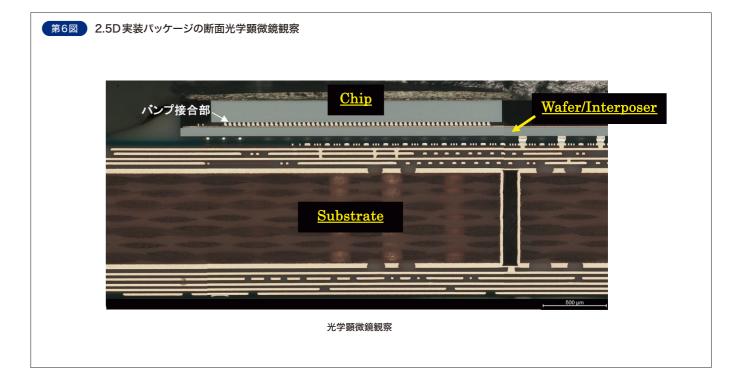

EBSD解析と断面 SEM (Scanning Electron Microscope: 走査型電子顕微鏡)観察結果より、微細ボイドの存在位置が特 定され、Via接合部に関しては、接合界面に対して結晶粒が連続 的に成長した状況から良好な接合状態が示唆される。

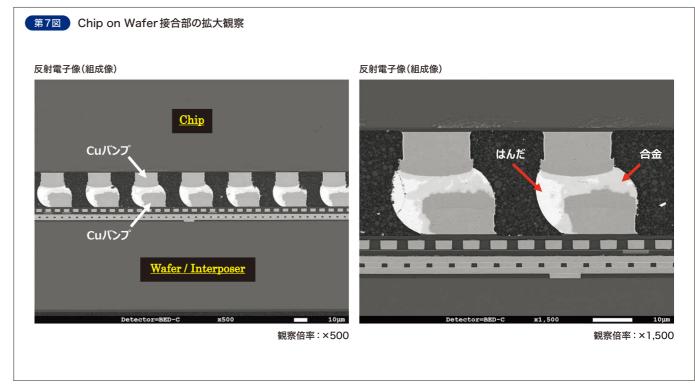
第5図はマイクロVia部断面のSecondary Ion Mass Spectrometry(SIMS)分析を行った結果である。SIMS分析で

はppmオーダーのごく微量元素の分析を行うことができ、空間 分解能1ミクロン以下での高精細マッピング分析が可能である ことから、本件のマイクロViaのような局所領域での分析に有効 である。

本分析では黄色丸を付けた箇所に注目すると、無電解めっき 層にはNa, N, S, Cl, B, Niがごく微量存在していることが明ら かとなり、ボイド生成との関連性が示唆されるデータが得られた。

このように、断面観察による、直接的な接合の良、不良の判断、 EBSD解析による結晶構造学的な考察、SIMSによる界面不純 物の把握を行う事によって、接合強度の改善や、微細ボイドの低 減による信頼性の向上につなげることができる。




第5図 インターポーザー内のマイクロ Via 接合部の SIMS 分析 反射雷子像(組成像 銅配線/Via界面付近にNa、N、S、CI、B、Ni元素が分布。

A-3 2.5D 実装の各種接合評価

2.5D 実装については、インターポーザーの素材によって、多種 多様な方式が提案されている。具体的なインターポーザーの材 料としてシリコン(Si)、有機樹脂、ガラスなどがあげられ、丸形の ウェハーサイズ、角型のパネルサイズなどのバリエーションがあ る。それぞれメリット、デメリットがあり、たとえば、Siインターポー ザーよりも有機樹脂やガラスのほうが安価だが、微細配線には 限界がある。高周波特性は有機樹脂が良いが、Siチップとの線 膨張係数のミスマッチが問題になりやすいなどと言われている。

このような状況の中、開発競争が激化しており、重要になるのが 評価技術である。対象材料ごとに評価の観点や、必要なテクニッ クが異なるため、分析技術についても、日々進化させている。今回 は、現在量産が始まっている、Siインターポーザーの評価技術に ついて紹介する。デバイスとしては、Chip on Wafer on Substrateのタイプであり、これは、複数の異なる機能を持った SiチップをSiウェハ上に搭載し、その後、Substrate 上に実装す る工程をへる。第6図、第7図に、Chip on Waferの接合部を、

Technical Report A 次世代半導体を支える3D実装技術とその評価法

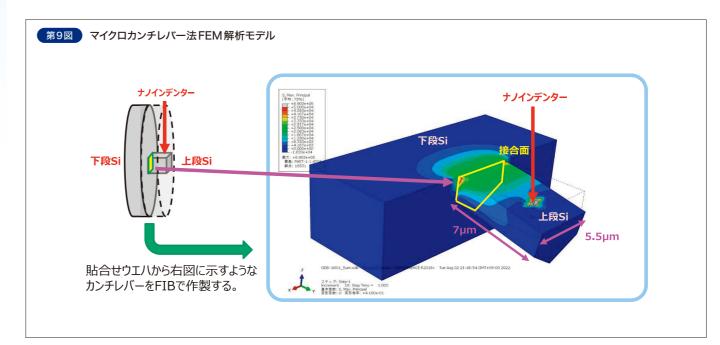
第8図に、Wafer on Substrateの接合部および、Wafer 中の 貫通電極(Through Silicon Via: TSV)部の断面SEM観察 結果を示す。

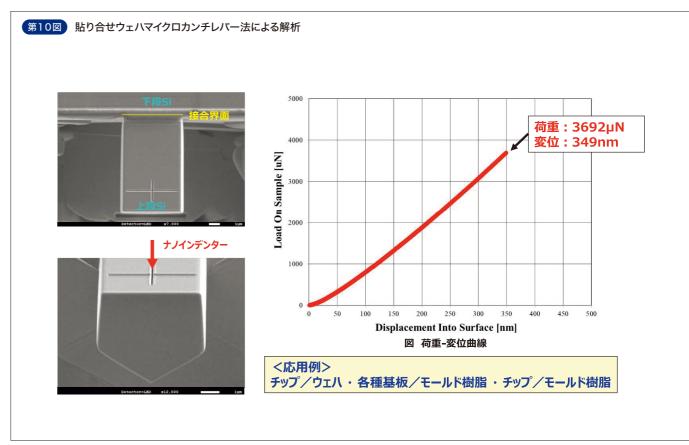
第6図に広域断面加工を行い、2.5D実装パッケージの光学 顕微鏡観察した結果を示す。広い範囲でバンプの断面を出すこ とができており、数多くのバンプに対して、接合の良、不良を確認 することができる。第7図がバンプ接合部の拡大図であるが、 Chip on Wafer接合部が、20µm前後のCu バンプをはんだ 接合したものであることがわかる。Snベースのはんだが、Cuバン プと反応して合金を形成し、その合金でバンプ間が接合されてい ることがわかる。接合の評価においては、バンプの位置ずれ、はん だの量ともり方、合金層の成長度合いなどの情報が得られる。特 にバンプのずれはブリッジを誘発する可能性が考えられ、重要な 観察ポイントである。また、アンダーフィル材の充填具合や、フィ

ラーの偏り具合なども明瞭に観察することができ、新しい充填材 料の評価などにも有効である。

第8図に、Wafer on Substrateのバンプ接合部の拡大を示 す。WaferがSiインターポーザーの機能を持つが、写真の上側 に再配線層を持ち、TSVでウェハ下側のCuバンプと接続し、 Substrateとはんだボールで接合されている。この断面SEM観 察により、TSVの出来栄え、Cuバンプとの接続の良・不良、はん だボールのつぶれ具合などの評価が可能である。今回観察した 部位においては、TSVとCuバンプ接合部において、前述した微 細VOIDが多く認められ、長期接続信頼性の点で懸念が残る。

第8図 Wafer on Substrate 接合部の拡大観察 反射電子像(組成像) 反射電子像(組成像) Cuバンフ TSV. はんだボール 観察倍率:×500 観察倍率:×1,500


A-4 ハイブリットボンディング製品の密着性評価


貼り合わせウェハ界面の密着性評価の手法として、Double Cantilever Beam Test(DCB法)が主流であるが、DCB法で は、ウェハの周辺部しか測定できないといったデメリットがある。

本稿で紹介するマイクロカンチレバー法を第9図に示す。 FEM解析モデルであらかじめ想定されたウェハ界面で、最大応 力が働くようなマイクロカンチレバーサンプルをFocused Ion Beam (FIB) 加工により任意の場所に作製する。作製したレ バー先端部をナノインデンター圧子で押し込んだ際に、レバーが 破壊した時の曲げ応力を求めることで接合強度を評価する手法 である。本手法の最大のメリットは評価位置を自由に選択できる ことであり、ウェハの面内ばらつきなども評価可能である。

第10図は評価の一例である。この事例では荷重約3700µN で破壊した。

本試験方法は、チップ貼り合わせ界面のみならず、さまざまな 接合界面や微細な構造体での応用が期待される。

本稿では3D実装された半導体部品の評価、解析技術の一端を紹介した。チップを垂直方向に積み上げる3D実装や、さまざまな チップを平面方向に配置する2.5D 実装などの、チップレット技術の開発では従来の後工程の概念をくつがえし、前工程の技術を融合 させたプロセスが行われる。そこには、さまざまな接合技術がもちいられており、信頼性の担保のために、その評価を正しく行うことが求め られ、半導体部品の高集積率化、微細化にともない、製品の評価に対するお客様のニーズはますます高まっている。このようなご要望に お応えできるよう、分析・解析技術のさらなる高度化、新規解析技術のメニュー化を図り、社会に貢献していきたいと考えている。